¿Te has topado con distintas definiciones de vector en diferentes disciplinas? ¿Cuál es la más exacta? ¿Cuál es la más correcta? Pues, la perspectiva del físico puede ser distinta a la del programador, aunque estén relacionadas, y la definición dada por el matemático parece estar desvinculada de las demás. En este artículo comprenderás la relación entre las diversas definiciones y cómo dan lugar a la generalización matemática de vector explicada en el concepto de espacio vectorial.
Origen del concepto de vector
Existen cantidades que se determinan por completo con solo utilizar un número real. Por ejemplo: la longitud, la masa, el área, la temperatura y la energía. Todas son magnitudes que necesitan de un solo número para quedar totalmente determinadas. Es suficiente con decir que la masa de aquel objeto es de 3kg, o la longitud de una carretera es de 10km. No hace falta especificar más. Tal cantidad se llama cantidad escalar.
Sin embargo, hay otro tipo de cantidad distinta a la cantidad escalar o estática, que son las cantidades dirigidas. No basta con solo especificar mediante un número la magnitud medida, sino también en especificar la dirección y el sentido. Por ejemplo, la velocidad de un cohete es de 900km/h hacia arriba y con dirección norte. Estas cantidades son llamadas cantidades vectoriales.
¿Quién inventó los vectores?
La invención o descubrimiento de los vectores no se le atribuye a una única persona, pero su origen está relacionado con la idea de “números con dirección” para representar magnitudes como la fuerza. Contribuyeron diversos matemáticos, como Descartes, Galileo, Gauss, etc. Pero si debemos destacar a un matemático es a William R. Hamilton, que en 1843 propuso una forma de representar fenómenos físicos en espacios tridimensionales.
Dato curioso: A la edad de cinco años, Hamilton podía leer latín, griego y hebreo. A los ocho añadió italiano y francés; a los diez podía leer árabe y sánscrito, y a los catorce, persa.
Las tres perspectivas sobre el vector
Existen tres ideas distintas, pero relacionadas, de lo que es un vector.
Para los físicos: los vectores son flechas que representan magnitudes vectoriales como la velocidad, la fuerza y la aceleración. Para los programadores: son una estructura de datos, pero de manera simplificada pueden ser entendidos como listas ordenadas de números. Para los matemáticos: son elementos de un espacio vectorial.
¿Cuál definición de vector es más correcta?
Sería un error clasificar una definición como más correcta que otra, pues cada una obedece a un contexto funcional específico. En el contexto del físico lo importante es representar magnitudes dirigidas, en el del programador es representar información ordenada, pero al matemático solo le interesa la estructura, lo abstracto, ni siquiera sin son flechas o no. Se enfoca en la preservación de ciertas propiedades en las operaciones establecidas.
¿Qué es un espacio vectorial?
Un espacio vectorial es un conjunto de objetos, provisto de dos operaciones llamadas suma y multiplicación por un escalar que satisfacen 10 propiedades fundamentales.
Axiomas o propiedades que debe cumplir la operación suma
Propiedades que debe cumplir la multiplicación por un escalar
Cualquier conjunto V, provisto de dos operaciones que cumpla con estas diez propiedades anteriormente dichas, es un espacio vectorial. Los elementos de V son llamados vectores.